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SECTION I

INTRODUCTION

The specific objectives of phase I of the Total Dose Hardness

Assurance (HA) Program are to

* (1) Identify all possible total dose HA techniques using literature,

personal contacts and techniques conceived from models of basic

mechanisms.

(2) Determine the effectiveness and practicability of each of the

techniques using existing data, experience and analysis.

(3) Verify by experiment the effectiveness of those techniques for

which an insufficient amount of data exists to reasonably

establish their usefulness.

A complete discussion of the total dose HA techniques that have been

identified in this program has been presented in volume I along with

discussion of their effectiveness and practicality in terms of existing

data, basic mechanisms models and analysis.

This report, volume II, covers the results of experiments which

were performed on discrete devices in order to verify those techniques

for which insufficient test data existed. The techniques which were

experimentally investigated included: (1) techniques which appear promising

but which had not been verified to a sufficient extent, (2) techniques

which had been experimentally researched but had not been applied directly

as a hardness assurance method, and (3) techniques which had been con-

ceived from models of hole trapping or interface state generation and

thus had not previously been experimentally investigated.

Because of the limitations imposed on the verification te.;ting

during phase I, several techniques which required verification testing

were not investigated. This was due either to the unavailability of the

appropriate test devices, e.g., gated bipolar transistors or gated diodes,

or the requirement for in-process testing such as would be done on test

wafers during processing. Since soveral of the techniques that require

6 K



some verification testing were not included in the phase I verification

test program, it was decided that the verification testing would be done

during the initial part of the phase II evaluation program. Therefore,

this report does not address all of the verification testing that will be

performed on the program but only that portion performed on "off-the-shelf"

discrete MOS or bipolar components.

The basic approach to the phase I verification testing was to measure

the correlation coefficient between the screening parameter and the

radiation hardness of a small number of samples of a commercial device

type. The number of samples ranged from 10 to 25. All irradiations were
60

done under bias on a Co source at a fixed dose level.

A full description of the various techniques that were investigated

in the phase I verification tests is given in volume I of the phase I

completion report. However, a brief summary of each technique is included

herein. Each section of the report, which addresses a different technique,

contains, in addition to a brief description and rationale, a discussion

of the approach, the samples used for the testing, the electrical tests

performed, the irradiation tests, data analysis, results and suggestions

for improving the technique, if applicable.

7 .



SECTION II

AVALANCHE HOLE INJECTION

1. OBJECTIVE

The objective of this experiment is to determine if a correlation

exists between parameter changes resulting from avalanche hole injection

and the damage produced by total ionizing dose.

2. RATIONALE

Hole trapping parameters of the oxide found by avalanching an under-

lying p-n junction have been investigated by Verwey ( refs. 1, 2).

Avalanching a p-n junction under an oxide produces holes sufficiently

energetic to en - into the oxide, where they either escape to the

negatively biased gate electrode or are trapped within the oxide. The

altered electrical behavior of the stressed device caused by trapped

positive charge yields the data required to calculate oxide trapping

parameters.

An oxide with relatively few hole traps would be expected to be less

susceptible to the effects of total ionizing dose. Therefore, the total

number of hole traps (N ), as determined by the avalanche injectiont

technique, should act as a screen for parts 4hich would show an unaccept-

able degradation in a total dose environment.

The original technique developed by Verwey assumes a field dependent

hole current through the oxide. To determine NoS, the concentration of

hole trapping centers times the capture cross section; transient picoamp

hole current measurements must be made at several oxide electric field

values. Complex data reduction is required, including numerical integration

of measured data. Assumptions required include the diffusion length of

hot holes, the interface area of the avalanching region, and uniform

injection over the avalanche area.



To avoid some of the difficulties of the Verwey technique, a new

technique was developed by BDM. The experimental procedure utilized is

illustrated schematically in Figure 1. The p-n junction is avalanched

by a fixed amount of current and the breakdown voltage immediately noted.

Energetic holes attracted to the negative gate bias enter the oxide, where

some are trapped. The trapped positive charge in the oxide will alter

the surface potential and causes the breakdown voltage to increase. The

gate bias is then made more negative to restore the initial breakdown

voltage and surface potential. Under constant surface potential, the

growth of the trapped oxide charge will be described as:

Q(t) = qN (l-exp(-t/Tc)) (Eq. 1)
t

where N is the number of oxide traps, t is time, and Tc is the capture
t

time constant. By letting time approach infinity (allowing the system

to approach a static condition), Q(t) = qN as nearly all oxide traps are
t

filled in the region of avalanche injection. The total number of oxide

traps can be calculated as:

AV G t
AX O

N= G ox o17 N =
t q X (Eq. 2)

where A V Gis the range over which the gate voltage was adjusted and X

is the distance from the gate to the centroid of charge. Bakowski et al.

(ref. 3) have found the traps to have characteristic distances from the
0 0

semiconductor of 150-200 A for dry oxides and about 400 A for wet oxides.

If the distance from the semiconductor to the charge centroid can be

assumed to be much less than the oxide thickness, equation (2) can be

approximated by:

= G ox o
t q dox (Eq. 3)

where d is the oxide thickness.
ox A

-t--------------------9
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Also investigated was the magnitude of the breakdown voltage increase

or breakdown voltage "walkout" produced by a fixed negative gate voltage.

W Vt for this condition can be obtained by reducing the p-n junction

voltage to the original breakdown voltage and then decreasing the gate

voltage until avalanche is initiated.

3. SAMPLES

k

The experimental test devices chosen where RCA 40468A MOSFE's. The

40468A is a large area N-channel depletion mode DMOS device with no gate

protection. It is packaged in a TO-72 metal can. Figure 2a is a photo-

micrograph of the device and Figure 2b is a cross section and doping

profile of the DMOS structure. Table 1 lists some of the important

electrical characteristics of the device. A total of ten devices were

used for the correlation studies.

4. ELECTRICAL TESTS

The threshold voltages of the test devices were determined by plotting

drain current as a function of gate voltage with a drain voltage of 50mV.

Thresh id voltage was obtained by extrapolating along the line segment

where transconductance is a maximum to the ID = 0 line.

4. STRESS TESTS

The avalanche injection stress was performed on a Tektronix 577

curve tracer in the sweep mode. The breakdown viltage "walkout" or

increase which can occur quite rapidly upon avalanche can be precisely

monitored with the storage feature.

The source lead was stressed with a current of 100 mA with the drain

floating and the substrate grounded. The initial gate bias was -10V.

The source was stressed for 5 minutes. Avalanche of the drain would be

impractical since the junction formed by the drain diffusion is not gated

as shown in Figure 2.

11



II

Figure 2a. Photomicrograph of the RCA 40468A (X86)

After the five minute stress, the change in gate voltage, (L VG), was

recorded. The gate voltage throughout the stress was constantly adjusted

in a manner which kept the breakdown voltage of the source at a constant

value.

In the second experiment, the source lead of undamaged samples was

again stressed at 100 wA with the drain open and the substrate grounded.

This time, however, the gate voltage was not adjusted but left at -10V.

Stress time was I minute.

Under these conditions, the breakdown voltage of the source was allowed

to "walkout" or increase. After stress, the gate voltage was reduced to

zero volts and the voltage applied to the source was reduced to a value

equal to the initial source breakdown voltage. The gate voltage was then

increased slowly until breakdown was just initiated. This value was

defined as the "gate recovery voltage".

i2i
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6. IRRADIATION

The devices were irradiated by exposure to the AFWL 5 kilocurie CO 6 0

5gamma ray source. The total dose received was 5XIO Rad (Si). A posi-

tive 1 volt bias was applied to the gate during the irradiation and all

other leads were grounded.

7. RESULTS

Figure 3 is a plot of AV (directly proportional to Nt ) as aG t
function of the change in threshold voltage. The negative slope of the

least squares fit line and poor correlation coefficient indicates that

knowledge of N will give no indication of the magnitude of threshold

voltage shift at 5XIO5 Rad (Si).

The disappointing results can be explained by the fact that thres-

hold voltage shift is also a function of interface state generation.

Consider the "growth curves" propo,:d by Freeman and Holmes-Siedle

(ref. 4) in Figure 4. At low doses the threshold voltage shift caused by

hole capture produces a linear change in the log of AV with respect to
t

Log of dose. At higher doses, the hole trapping saturates and the shift

produced by surface states become dominant in a nonlinear manner.

The unhardened samples tested were irradiated to 5X10 5 Rad (Si)

which may be well into the trap dominated nonlinear region. If these

devices were irradiated in the nonlinear region, no correlation between

N and AV could be expected.t t

A further study of the work of Freeman and Holmes-Siedle indicates

that avalanche hole injection may be of great use in total dose hardness

assurance. Two "engineering growth curves" shown in Figures 5 and 6

are suggested as useful "for making predictions of the lifetime of MOS

circuits exposed to radiation in space or laboratory environments."

The curves of Figure 5 predict that the maximum threshold shift

under a negative gate bias is the gate voltage applied. This effect

should be seen in the second experiment and will act as a check on the

15
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validity of the avalanche hole injection technique. Assuming trap

saturation did not occur, the "gate recovery voltage" should differ from

the initial gate voltage by an amount equal to the initial gate voltage

of -10 V. The average increase actually obtained was -8.5 V with a

standard deviation of 1.42 V. These results indicate that the oxide

charging reaches approximately 85 percent of its final value in 1 minute

under the conditions stated.

It would be of value to obtain an easy method of determining both

N and the constant "A" in Figure 6. The change in threshold voltage

in terms of saturation of all available traps can be written as:

AV (sat) = q X A
ox C (Eq. 4)

where X is the distance from the centroid of the charge to the gate metal

(approximated by d ox), A is the initial trapping probability and S is the

capture cross section. For avalanche hole injection:

AVt (sat) = AVG (Eq. 5)

-14 2
Taking the typical value of S as 5X10 cm2 , the "A" value for the oxide

can be calculated as:

A- (5X10- 14 cm2AV ox o

q X (Eq. 6)

where X may be approximated by d in some cases.

A typical AV G obtained with the test devices was 20 V. Assuming

d = 0.1 pm:
ox

18
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(30 V) (3.9) (8.854Xi0
- 12 Fm- ) (5X10 -1 8 M )

(1.602X10-19 coulomb) (O.IXlO- ) (Eq. 7)

A = 0.215

which is the A value for a moderately sift oxide. The total number of

oxide traps is estimated as:

-12 -lI
N = (20 V) (3.9) (8.854Xi0 Fm-

l

t (1.602X0 - 1 9 coulomb) (O.1X0-6 m) (Eq. 8)

Nt = 4.31 X10
12 traps/cm

2

which is consistent with the known properties of oxides.

8. IMPROVEMENTS

A decisive verification of avalanche hole injection will require

tests on known hard and soft oxides. The variation in hardness of a

sample of commercial parts may be too small for the avalanche hole

technique to resolve.

The test parts should be irradiated at low doses to avoid the

effects of surface states. When used as a screen, surface state effects

will have to be factored in separately.

It is possible to improve the avalanche hole injection technique.

If the small oxide current could be successfully measured, it would be

possible to estimate the capture cross section of the hole traps.

Maier* has suggested that the surface states produced by avalanche

hole injection may be measured by noting the increase in the junction

leakage current produced by the stress. A gated diode can be used to

make this measurement by depleting the surface under the gate and noting

*Private Communication with Roe Maier of AFWL.

19
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the increase in leakage current. No such increase was observed when

attempting to use the 40468A as a gated diode. The observed leakage

current (nanoamps) is probably due to package leakage and bulk recombi-

nation currents which are much larger in magnitude than the surface

generation current component.

It is suggested that in phase II, the p-n junction avalanche tech-

nique be applied to a gated diode, for which both the AVG to maintain a

constant breakdown voltage and the increase in surface recombination

velocity, AIso, can be monitored as a function of stress.

In conclusion, the avalanche hole injection technique has not been

verified as a functional screen for parts to be subjected to a total dose

environment. However, reasons have been given why these results should

not be considered conclusive. Values of the total number of traps and

the initial trapping probability were calculated for a typical test

device which are consistent with the known properties of gate oxides.

The computed oxide parameters predict that the RCA 40468A possesses a

moderately soft oxide.

The avalanche hole injection technique may still prove to be a valid

simulation of the radiation environment if applied to a gated diode

structure and evaluated over a range of stress conditions and radiation

levels.

20



SECTION III

NEGATIVE BIAS TEMPERATURE STRESS (NBT)

1. OBJECTIVE

The purpose of the NBT experiment is to determine the degree of

correlation between damage produced by NBT and damage produced by total

ionizing dose.

2. RATIONALE

Several studies (refs. 5, 6) have investigated the effects of heat-

ing MOS devices with a negative bias applied to the gate. The investi-

gators found that NBT treatment increased the surface state density and

the density of positive charge. Jeppson and Svensson (ref. 7) suggest

that at low electric fields, stress activates a chemical reaction which

produces a positive oxide charge and a surface defect, while at high

electric fields, holes are injected from the semiconductor and the trapped

holes create surface states.

Because NBT and total dose both produce similar damage, i.e., trapped

holes and interface states, NBT stress may act as a substitute for radiation

tests. Such a substitution, if possible, could save significant amounts

of time and expense by eliminating the need for radiation testing, except

perhaps on a periodic basis.

3. JUSTIFICATION

NBT is not the only possible "radiation simulator" technique possible.

Hole injection by p-n junction avalanche (discussed previously) is a room

temperature technique but produces such a narrow region of damage that

device electrical characteristics are virtually unaffected. Bulk avalarich-

21



ing techniques can also be done at room temperature but only with complex

equipment on a specially fabricated test structure. NBT, while requiring

high temperatures, is simple and can be performed on any gated device

which has no input protection network.

4. PROCEDURE

The experimental procedure chosen was to subject N-channel MOSFETs

to a low-field NBT treatment. The first group of samples were stressed

at 300kC for 15 minutes with a gate bias of -20 volts and all other leads

4grounded. The damage was then annealed out at 300kC for I hour with all

leads shorted. The devices were then irradiated under bias 1 X 106

60
Rad (Si) by exposure to Co . The correlation between the change in

threshold voltage induced by NBT and the change in threshold voltage

produced by the irradiation was determined.

5. SAMPLES

RCA 40468A MOSFETs were used as test vehicles in the experiment.

The 40468A is an N-channel depletion mode DMOS device which has no gate

protection network.

6. ELECTRICAL TESTS

Threshold voltage for the samples was determined by plotting the

drain current versus gate voltage with a drain voltage of 50 mV. Thres-

hold voltage was obtined by extrapolating along the line segment where

transconductance is a maximum to the I = 0 line. The slope of the

straight line segment is directly proportional to the maximum field

effect mobility.
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7. IRRADIATION

Devices were irradiated on the AFWL 5 kilocurie Co 6 0 gamma ray source.

A gate bias of +IV was applied during the irradiation and all other leads

were grounded.

8. DATA ANALYSIS

Figure 7 is a plot of the change in threshold voltage due to radiation

(AVTR) as a function of the change in threshold voltage caused by NBT

(AV S). A least squares fit is drawn through the data. The correlation

coefficient is 0.83 + 0.14. Relevant statistics for this test are given

in Table 2.

'fable 2

TEST RESULTS

Prestress IVT1 JAVTI NBT V T(Prestress)/V T(Anneal) :V TIRAD

A 1.46 V 0.18 V 0.97 2.11 V

0 0.086 0.19 0.078 0.61

n 10 7 7 7

Encouraged bv these results, the experiment was repeated for an

additional 15 test devices with some variations intended to improve the

correlation. The NBT stress time was doubled to 30 minutes to attempt

to produce a more substantial level of damage. More points were measured

on the drain current vL~-ius gate voltage characteristic curves so V V

could be measured with greater accuracy. The anneal bake was lengthened

to 6 hours in an attempt to make the ratio [Prestress 'VTI/Anncal iv.r]

more closely approach unity. The radiation level was reduced to IX10 5

Rad (Si) so that the change in threshold voltage produced bv irradiation

would be comparable to the change caused by NBT. The statistical results

of this experiment are given in Table 3 (m transconductance).
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The ratio of IVT initial to VTI anneal for the 1 hour anneal was

0.97 with a standard deviation of 0.078. The annealing ratio for the

6-hour anneal was 0.984 with a standard deviation of 0.015, indicating

that a 6-hour 300C bake produced better anneals than the 1-hour bake.

A plot of IVT (initial)-VT (NBT)j as a function of IVT(anneal)-VT

(Rad)j is shown in Figure 8. The correlation coefficient between the two

parameters was found to be -0.30 + 0.25.

Because of the relatively large degradation in the field effect

mobility produced by both NBT and radiation, this parameter was also

studied. Figure 9 is a plot of the change in maximum transconductance

produced by NBT as a function of the change in maximum transconductance

produced by radiation. The correlation coefficient is -0.12 + 0.27.

9. DISCUSSION

The correlations obtained for the more tightly controlled experiment

are discouraging. However, explanations for these results suggest NBT

may yet prove useful.

The large changes in transconductance suggest that surface state

creation is dominating the radiation response. Surface state domination

can produce threshold voltage shift turnabout, as illustrated by Figure 10.

If NBT produces damage equivalent to dose X of Figure 10 and the

irradiation level is at dose level X2, the nonlinear characteristic will

reduce the correlation between NBT and radiation.

Other factors may also be responsible for the poor correlations

obtained. NBT causes a hole flux to flow from the semiconductor toward

the metal while the positive voltage applied during irradiation produced

a hole flux in the opposite direction. Except for the case of hole trap

saturation, the two fluxes should produce slightly different charge

centroids. Negative gate biases also have a characteristic saturated

threshold voltage different than that of positive gate biases. This

saturated threshold voltage occurs when compensating charges built up
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in the oxide cause the electric field to vanish. In addition, the high

temperatures utilized for NBT may alter the physical constants and dynamics

of the trapping process. Finally, it has not been established whether the

high field or low field regime is the more suitable of radiation. NBT

effects will occur over a wide range of temperatures and electric fields.

Device B

Device A Device C

)ose Rad (Si)

Figure 10. Turnabout Produced by Surface States

10. IMPROVEMENTS

In the base II verification tests for NBT, AV versus stress time
T

will be performed at both high and low electric field strengths. These

will be compared to the "growth" curves for AVT vs y. In addition,

p-channel devices will be investigated. Tests will also be performed on

p and n substrate MOS capacitors to determine if the capacitor structure

may prove a better test vehicle for this technique.



SECTION IV

HFE DEGRADATION FROM EMITTER - BASE (E-B) STRESS

1. OBJECTIVE

The purpose of this experiment is to determine if gain degradation

produced by E-B stress is correlated to gain degradation produced by

total ionizing dose.

2. RATIONALE

Several studies (refs. 8, 9, 10) have shown that avalanche breakdown

of the base-emitter junction in bipolar transistors produces energetic

holes which may be injected into the base oxide, producing surface damage

similar to the damage produced by ionizing radiation. Hole injection

produces an increase in the density of surface states in the base, which

act as recombination centers, and positive oxide charges, which alter the

surface potential. Current gain degradation is the major effect produced

in transistors after accumulation of a total ionizing dose.

Transistor susceptibility to gain degradation produced by total

ionizing dose should be related to the gain degradation produced by E-B

stress, if the hole injection process can be controlled by a gate electrode

over the base oxide. In the absence of a gated base, injection may still

occur but will be controlled by the naturally occurring surface fields,

whose magnitudes are not known.

3. JUSTIFICATION

Because gated devices were not available for the verification phase,

E-B stress was applied to commercial bipolar transistors to determine if

the natural surface fields would produce a controlled injection and allow

E-B stress to be used as a sample part screen for commercial packaged

devices.
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4. PROCEDURE

For the experimental test procedure, a sample of packaged transistors

was chosen as test structures. These transistors were then subjected to

the following procedures:

(1) Pretest Electrical Characterization

(2) Stabilization Bake at 280C for 10 minutes

(3) Poststabilization Electrical Characterization

(4) Emitter-Base Stress

(5) Poststress Electrical Characterization

(6) Anneal Bake for 6 Hours at 275'C

(7) Postanneal Electrical Characterization

(8) Gamma Irradiation to 0.5X10 6 Rad (Si)

(9) Postradiation Electrical Characterization

The purpose of the device stabilization was to ensure that changes

which occurred during the high temperature bake were due only to the

damage annealed out during the stress step. The poststabilization and

postanneal characteristics serve as baselines which are nearly equal for

measuring damage produced by stress and radiation.

5. SAMPLES

Forty transistors of 4 device types were tested in this verification

test. The transistors included 10-2N2720 NPN low power, 10-2N2944 PNP

low power, 10-2N3468 PNP high power and 10-2N2537 NPN switching transistors.

All transistors were encapsulated in metal packages.

6. ELECTRICAL TESTS

Recombination centers introduced into the base region will not alter

the injection of minority carriers into the base region and thus will have

no effect on collector current. However, the recombination of minority
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carriers in the base will result in an increase in base current. This

additional base current component is especially important at low collector

currents where surface recombination can become the dominant factor

determining current gain. Therefore, base current at a constant value

of collector current was determined at each electrical characterization

step. The values of collector current at which base current was measured

were 10 pA, 100 pA, I mA, and 10 mA. Measurements were made on a

Tektronix 577 curve tracer with a collector to emitter voltage of 6.5

f volts.

All devices except the 2N2944 were stressed for 1 minute by avalanching

the base-emitter junction at 10 mA and leaving the collector open. The

2N2944 was stressed at 1 mA for 1 minute to keep the power dissipation

caused by the high base-emitter breakdown voltage at acceptable levels.

7. IRRADIATION

The test devices were irradiated by exposure to the AFWL 5 kilocurie

Co60 gamma ray source. The test devices were irradiated to a total

ionizing dose of 5X105 Rad (Si). All devices were irradiated with a

collector-base reverse bias of 10 volts. The base and emitter leads were

grounded.

8. RESULTS

A summary of device behavior throughout the test sequence will be

given in terms of the base current required to maintain a collector

current of 100 wA.

The stabilization bake caused the base current of some devices to

increase while other devices showed a decrease. A summary of device

behavior following t'le bake is shown in Table 4. 1B is the post-bake

average base current. F INC is defined as:

I



IB (Stabilization)

IB (Initial) (Eq. 9)

for tne device which produces the largest quotient. F DEC also uses

equation 9, but this number is for the device with the smallest quotient.

Table 4

EFFECT OF STABILIZATION

I F F
Device B INC DEC

2N2720 268 nA 1.03 0.92

2N2944 351 nA 1.06 0.99

2N3468 2.59 PA 1.01 0.93

2N2537 5.89 PA 1.85 0.77

Similar results for the base current following stress are shown in

Table 5. F is defined as:
INC

I (Stress)

I B (Stabilization) (Eq. 10)

for the device which produces the largest value. F D describes the

device with the smallest chang--.

Table 5

EFFECT OF STRESS

FS

1)0'i' CL' I NC DEC

2N2720NPN 552 nA 2.96 No decrease observed

2N2944PNP 481 nA 2.30 No decrease observed

2N3468PNP 2.69 ;A 1.09 0.995

2N2537NPN 3.20 -,A 1.91 0.49
B=

L.llI



The surprising result of Table 5 is that stress can produce an

increase in current gain. This anomalous gain increase has been attri-

buted to injected positive charge bringing the silicon surface in the

base region out of depletion, where maximum recombination occurs.

The purpose of the annealing step was to bring the electrical char-

acteristic back to the poststabilization values. Table 6 is a summary

of the annealing results. AI of Table 6 is equal to-the post anneal
* B

average base current minus the poststabilization average base current.
An A

FA_ and F are the largest and smallest values of:
INC DEC

IB (Anneal)

IB (Stabilization) (Eq. 11)

Table 6

ANNEAL RESULTS

I Al FA_ FA
Device B B INC DEC

2N2720 305 nA 38 nA 1.30 None*

2N2944 385 nA 34 nA 1.16 None

2N3468 2.78 PA 0.19 wA 1.14 None

2N2537 6.12 oA 0.23 PA 1.19 0.93

*None - No device had an IB (Anneal) < I

IB (Stabilization)

Table 6 indicates that, in almost all cases, the stress damaged

transistors cannot recover to their prestress current gain values by

applications of an anneal cycle. However, annealing did reduce damage

significantly.
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To be effective as a screen, the level of damage produced by stress

should correlate with the damage caused by the radiation exposure.

Figures 1la-d are plots of the change in one over gain between the

stabilized parts and the stressed parts, as a function of the change in

one over gain between the annealed parts and the irradiated parts for

each device type.

Figure Ila, the plot of Al/s as a function of Al/ for the
s Y

2N3468, producds a least squares fit to the data with a correlation

coefficient of -0.11 + 0.35, or no correlation at all. Figure llb

shows a correlation coefficient between stress and radiation damage of

*0.64 + 0.21. Gross features of Figure lib, however, are discouraging.

One device which showed the next to the lowest change of stress induced

damage showed the highest level of radiation induced damage. Figure

llc produced a correlation coefficient of -0.64 ± 0.21 which opposes the

model these tests are designed to support. Figure lld gives no indication

that the devices with the highest stress induced damage show high levels

of radiation induced damage.

9. CONCLUSIONS

It is obvious that the emitter-base stress test as conducted is

unsuitable as a screen. However, this result is not totally unexpected

because of the inability to control the hole injection without a gated

base region. With a base electrode, greater control of the hole injection

would be possible. In addition, a base current versus gate voltage curve

could be generated which would allow the effects of positive charges in

the base oxide to be predicted.
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SECTION V

EDGE STATES BY NOISE MEASUREMENTS

I. OBJECTIVE

The purpose of this experiment was to determine if a correlation

exists between the density of edge states near the band edge and the

radiation susceptibility of a device to total ionizing dose. Surface

states density was inferred from measurements of electrical noise.

2. RATIONALE

Evidence has been presented by Pepper (refs. 11, 12) that the oxide

hole trap consists of a dipole charge near the oxide-semiconductor

interface in the oxide layer. Because of the weak field of dipoles,

they would be expected to produce interface states with very shallow

levels.

Sah and Hielscher (ref. 13) found that the square of the low frequency

electrical noise at the gate of an MOS structure is directly proportional

to the density of surface states with energies at the Fermi level. By

adjusting the Fermi level close to the band edge, the shallow energy

states produced by dipoles may become the dominant noise voltage term.

The square of the noise voltage would then be related to the number of

oxide hole traps.

3. JUSTIFICATION

Other methods of surface state measurement were considered but

rejected. The C-V method was rejected because it must be performed at

the wafer probe level and it is only accurate in the midgap region. The

method utilized by Pepper of measuring the effect of substrate bias on

04(



conductivity was considered impractical because temperatures of 4.2'K

were required. Hall effect measurements required special test structures

and equipment.

The advantage of noise measurements is that they can be made using

commercial equipment. Also, measurements can be made in inversion on

packaged MOSFETs.

4. PROCEDURE

The procedure used to measure edge states was to measure the equi-

valent gate noise of MOS transistors in strong inversion. In strong

inversion, the Fermi level can be expected to be within a few tenths of

an eV of the band edge. Any voltage drop across the channel should be

minimized so the Fermi level will be uniformly constant within the

device. The noise measurement must be made at a low frequency (< 20 Hz)

to insure detection of states with slower time constants. Following

irradiation of the test devices, the square of the low frequency noise

can be compared to the change in threshold voltage produced by the radi-

ation.

5. SAMPLES

The test samples used in this experiment were RCA 40468A MOS

transistors. These devices are N-channel depletion mode DMOS with no

gate protection.

6. ELECTRICAL TESTS

Low frequency gate noise of the test samples was measured using a

EIP4470A Transistor Noise Analyzer. The 4470A was utilized because it is

one of the few commercial instruments suitable for measuring MOSFET

noise. Systems such as the one used by Sah (ref. 13), which can make

measurements across the band gap, were not fabricated due to program

constraints.
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The drain voltage was maintaincd at the smallest possible value

(68 mV) that tke HP4470A would allo ,. Drain current was set to 100 wA.

The equivalent RMS gate voltage at 10 Hz at a bandwidth of 1 Hz was read

directly from a panel meter.

The threshold voltage of the test devices were measured in the

linear region by plotting drain current as a function of gate voltage

with a drain voltage of 50 mV. IVTI was obtained by extrapolating along
T

the line segment where transconductance is a maximum to the ID = 0 line.
fD

7. IRRADIATION

60
The devices were irradiated by exposure to the AFWL 5 kilocurie Co

source. The total dose received was IXI6 Rad (Si). '>ie gates were

biased at +IV during the irradiation and all other leads were grounded.

8. RESULTS

The squared noise voltage plotted as a function of change in threshold

voltage is shown in Figure 12.

The correlation coeffizient of 0.22 + 0.34 and features of the plot

indicate that low frequency gate noise will not predict threshold voltage

shift of MOSFETs at a dose level of IXIO6 Rad (Si).

9. ANALYSIS

There are several reasons for the poor results. 
If the (noise)2

measured was proportional to the dipole density, a poor correlation could

result due to the nonlinear damage characteristic observed at the higher

doses. To be conclusively tested for value as a screen, the test samples

would have to include hard and soft oxides, with irradiation levels kept

low.

The most likely explanation for the poor correlation is that the

electrical noise observed was not from dipole charges but from other
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sources. The necessity of biasing the transistors on produces an addi-

tional noise source as indicated by Aoki, Katto, and Yamada (ref. 14).

Aoki et al., have found that conductance mobility fluctuations due to

surface potential roughness contribute to noise. However, Aoki concludes

that "measurements of 1/f noise at low current levels will provide an

effective means of monitoring various processes." Pepper (ref. 15)

concludes that "the potential fluctuations due to the pairs are weak and

consequently they do not show up in conventional C-V or G-V techniques."

Pepper's remarks suggest that it may be impossible to detect hole trap

dipoles using a room temperature measurement.

Because of the rapid falloff of the electric field produced by

dipoles, only those dipoles very near the interface can be expected to

produce surface states. Hole traps deep in the oxide may go undetected.

10. CONCLUSIONS

For edge state determinations to be useful as a screen, it first

must be established that the shallow surface states produced by hole trap

dipoles can be detected at room temperature. If these states can be

detected, then noise measurements will be useful if (1) the noise in

strong inversion is dominated by these charges and (2) the dipole density

at the interface is an indicator of the oxide hardness.

To conclusively verify the value of noise measurements, hard and

soft oxides should be evaluated and all radiation tests conducted at low

levels.
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SECTION VI

DETECTION OF DIPOLE CHARGE

1. OBJECTIVE

The objective of this experiment was to correlate the relative

magnitude of total oxide charge measured by noise techniques to the

radiation susceptibility of test devices. It was hypothesized that the

total oxide charge may include dipole charge associated with hole traps.

2. RATIONALE

Pepper (ref. 15) has given evidence that the hole trap consists of

a dipole charge in the oxide. Nicollian and Melchior (ref. 16) have shown

that oxide charges alter the surface potential in local regions. The

distribution of surface potential affects the spectrum of noise in a

manner which allows calculation of a, the standard deviation of surface

potential. a, in turn is related to Q, the total oxide charge. If the

oxide total charge includes Pepper's dipoles, then determination of a

should act as a hardness assurarc, screen.

3. PROCEDURE

To obtain o, the log of the squared noise voltage is plotted against

the log of frequency. An asymptote of slope 0 is fit to the low frequency

data, which should approach a zero slope. Another asymptote of slope

1/f is fit to the higher frequency data and is tangent to the data at

the point F . The intersection of the two asymptotes occurs at the
P

point F Taking the frequency values of F and FL' ( can be approximatedP

from:

F = F e x p [- ( 72 ) 11 2( )/2p x [Q
2  7 (Eq. 12)
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4. SAMPLES

Ten RCA 40468A MOSFETs were evaluated using noise measurement'. The

40468A is an N-channel depletion mode DMOS device with no gate protection.

5. ELECTRICAL TESTS

The HP4470A Transistor Noise Analyzer was used to obtain the noise

spectrum data. Drain voltage and drain current were picked to maximize

the bandwidth over which .:easurements could be made.

6. RESULTS

Unfortunately, the bandwidth of the HP4470A Transistor Noise

Analyzer was not sufficient to accurately determine FL and Fp as di-

cated by Figure 13. No line segment with slope of either 0 of 1/f can

be resolved within the band of frequencies accessible. Therefore, deter-

mination of u from the HP4470A measurements does not appear feasible.

7. IMPROVEMENTS

R. Maier* has suggested that a can also be obtained from the spread

of the conductance versus frequency curve for MOS capacitors. Preliminary

work is being done in this area, but no results are available for

presentation.

Another possible area of investigation is based on the work of Aoki,

Kato and Yamada (ref. 14). Aoki et al. noted that the noise of "on"

MOSFETs increased as drain current was decreased. This effect was

attributed to an increase in surface potential roughness at low electron

concentrations, where the charge screening effects of electrons become

*Private Communication with Roe Maier of AFWL.
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important. This explanation is remarkably similar to Fowler's (ref. 17)

explanation of the low temperature substrate bias effect which Pepper

related to hardness. Fowler concludes that "the fluctuations are much

more effectively screened than expected as the electrons are forced to

the surface." The increase in noise at low drain currents may be a room

temperature substitute for the low temperature substrate bias effect.

Such measurements would be perfectly suited for the 4470A.

8. CONCLUSION

In conclusion, the HP4470A is not capable of producing data for the

evaluation of the standard deviation of surface potential as a total dose

screen. However, other methods of analyzing oxide charge show promise

and should be explored.
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SECTION VII

INPUT CURRENT OF INTEGRATED AMPLIFIERS

1. OBJECTIVE

The objective of this experiment was to provide additional support

to the observation that input bias current is related to the hardness

of linear amplifiers.

2. RATIONALE

The change in offset voltage is the most important total dose

effect in linear bipolar amplifiers. Because of the gain in successive

circuit stages, it is reasonalbe to assume that the change in offset

voltage in the first stage will dominate the overall response. Therefore,

the relative emitter current levels in the input transistors should be

a indicator of how much offset voltage change will occur in the amplifier.

3. JUSTIFICATION

The input transistor operating current is the basis for a screen

which has been implemented by JPL (ref. 18) and NRL (ref. 19) on LMI08

operational amplifiers. The original idea of input current as a screen

was developed by Johnston and Skavland (ref. 20), who used input current

as a neutron effects screen.

4. PROCEDURE

The offset voltage of test samples was determined along with the

necessary information to determine emitter current. The devices were

then irradiated and the offset voltage remeasured. The change in offset

voltage was then correlated with the average emitter current of the input

stage.
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5. SAMPLES

Twenty-five Fairchild OA741HC operational amplifiers and 25 TI

iA733CN video amplifiers were obtained as test samples. The equivalent

circuit of the 741 is shown in Figure 14 and the equivalent circuit of

the 733 is shown in Figure 15.

6. ELECTRICAL TESTS

Offset voltage of the samples was measured using a Tektronix 577

curve tracer with a Tektronix 178 Linear IC Test Fixture. A difference

amplifier was required at the outputs of the 733 to enable the offset

voltage measurement to be made. Care was taken to ensure that the

difference amplifier did not contribute to the offset voltage measured.

The gain select nodes of the 733 wer? biased to yield a gain of 100.

Plus and minus supply voltages of thie 741 were 15V. Supply voltages of

the 733 were plus and minus 6 volts.

To obtain input operating current, the output voltage of the op amp

was adjusted to 0 volts and the voltage at the offset null nodes recorded.

The amplifier was then removed from the test fixture and the impedance

between the offset null and V- was recorded, with the positive lead of

the ohmmeter connected to the offset null pin. The current through R1

and R2 of Figure 14 can be calculated as the offset null voltage divided

by the measured value of R 2 or R, depending on which side was tested.

From circuit analysis theory, it can be seen that the current througi R1

and R2 is approximately equal to the emitter current of and

respectively. The average emitter current is then calculated as the input

operating current.

Similar techniques were used to calculate the input operating current

of the 733. Measurements were made between C and U as shown in Figure

15.



E OUIVAL FNT CIRCUi T

Figure 14. E-quivalent Circuit of the 741 Operational Amplifier
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7. RESULTS

The average input operating current for the 25 741's was 6.85 nA

with a standard deviation of 9.82. The average input operating current

for the 733's were 1.85 mA with a standard deviation of 0.029. Because

the standard deviation of the input operating current is small compared

to the expected deviation in offset voltage changes, the 733's were

dropped from the experiment.

8. IRRADIATION

The test devices remaining were irradiated by exposure to the AFWL 5

kilocurie Co60 gamma ray source. The d-vices were irradiated to a total

ionizing dose of 1 X 106 Rad (Si). During the irradiation, the devices

were configured as unity gain amplifiers as shown in Figure 16.

+15 V

-1Q V

Figure 16. Irradiation Mias configuration

9. RESULTS

A plot of the change in offset voltage as a function of the input

operating current is shown in Figure 17. A least squares fit to the

data is also shown.

52 
! ,



ck0

La 0

L.a

r .. c a~

FmJ

i- -4

W~~~. w iw iL
V Li C9 f009

ol~~~c C3 -LiM %

53.



The positive slope of the fitted I ne and tire poor correlat ion

Coet t Ici tnt indicate that input operating current was not an indi cator of

total dose ha rdness for this set of experimental conditions.

WO. CONC LUS IONS

The results obtained in this experiment do not conclusively prove or

disprove the hypothesis that input hias currents may he used as a Screell

"- fu operational amplifiers .JPL used input hias current as a diffusion

lot screen and not as a discrete parts screen. The data of Figure 17

suggests that test devices were from two diffusion lots. Therefore, on]%

two data points are availatlhe to determine if input 0 a . ,ould he a lot

screen for 741 operational amplifiers. Two data points are insufficient

to determine the validity of the techniqule as a lot screen. As a part

level screen it certainly appears invalid for the mA741, However, the

test vehicle chosen for the phase 1I tests will allow the input operat irg

current to be varied over a wide range such that the spread in 6 1/8 of

the input transistor can he determined at severa l different current

levels and compared to the spread in average A 1/ between the current

levels. This will indicate how well the technique wilt work as a tunct ion

of the maximum spread in input operating current.

54



SECTION VIII

IRRADIATE AND ANNEAL

1. OBJECTIVE

The objective of this experiment was to verify that annealing

reduces total dose damage to an acceptable level and that an equivalent

reirradiation exposure will produce a comparable level of damage.

Irradiate and Anneal (IRAN) is a 100 percent screen applicable to

any silicon technology device. The devices are exposed to the expected

threat level dose under worst case bias conditions and any devices not

meeting the threat level are rejected. The remaining devices are annealed

and used in the system.

2. JUSTIFICATION

IRAN has been studied by several investigators (refs. 21, 22, 23,

24, and 25). Mixed results have been obtained for the wide range of

techniques tried. For IRAN to be implemented as a screen, it must posses-

two features. First, it must be verified that enough damage can he

annealed out to allow the device to pass its electrical specifications

and not degrade the failure rate. Secondly, it must be demonstrated that

upon reirradiation, the level of damage at the same dose as the original

irradiation will produce a comparable amount of damage.

3. PROCEDURE

The test devices in this experiment were split into three groups.

5, 5 6 iThe groups were irradiated at 1 X 10 5
, 5 X 10 5

, and I X 10 Rad (Si) b%

Harris Semiconductor. The devices were then annealed. Many anneal i ng

times and temperatures have been tried by various investigators with

wide results. An anneal bake at 3000C for 6 hours was chosen. The

devices were then reirradiated tinder the same conditions as the first

irradiation.
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4. SAMPLES

The test samples used were 26 special test structures supplied by

Harris Semiconductor. Figure 18 is a circuit diagram of the four MOS

transistors. The structure consists of two N-channel and two P-channel

devices. One of the N/P Lhannel devices has a short channel while the

other has a long channel. The devices were manufactured using hard and

soft processes.

Circuit:

P-channel Short I P-channel Long

16 0-

4 15 -- 09

N-channen.lShort
N-channel Short On N-channel Long

6

Bias for Irradiations: +10 VoLts to pins I and 15

0 Vol ts to pin 6

Short pin 4 to pin 16

Figure 18. I1,itris SeI rt(IIJ(tt Spm' mal ,(JSFFI Vest Structure

) (0 '1



5. ELECTRICAL TESTS

The threshold voltage of each device on every unit was determined

by measuring the gate voltage at which the drain current equaled LiA.

The drain voltage was set equal to the gate voltage. Harris Semiconductor

made the threshold voltage measurements before and after the first irradi-

*ation.

t

6. IRRADIATION

The first irradiations were conducted by Harris Semiconductor. The

second irradiations were conducted by BDM using the AFWL 5 kilocurie Co
6 0

source. Three separate irradiations were conducted to duplicate the
5 5 6original levels of 1 X 10 , 5 X 10 , and 1 X 10 Rad (Si). The bias

used for all irradiations is given in Figure 18.

7. RESULTS

The statistical results of the experiment are listed in Table 7.

- The change in threshold voltage produced by the initial irradiation is

plotted as a function of the change in threshold voltage produced by

the second irradiation in Figures 19a-d. The correlation coefficient

and least squares fit line is included on each plot.

The information in Table 7 indicates that a sputter metallization

process produces damage very similar to the damage caused bv total

ionizing dose. Referring to Figure 10, if sputtering produces a damage

equivalent to dose X2, then any additional irradiation will cause a

negative change in the threshold voltage shift. A negative threshold

voltage shift is observed for the sputter metallized devices.

The sputter damage phenomenon also explains why the anneal bake was

much more successful for the flash metallized parts. The anneal bake

removed part of the sputter produced damage.
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The results of Table 7 indicate that annealing is much more successful

on P-channel devices than on N-channel structures. The reason for this

effect is not clear.

The results of Figures 19a-d show a good correlation between the

threshold voltage shift produced by the first and second irradiation.

The correlation suggests that radiation damage is reproducible after an

anneal bake.

A disturbing feature of Figures 19a-d is the good fit shown by

the sputtered devices. If the anneal had been completely succe"sful,

the sputtered parts should have shown the positive threshold voltage shift

experienced by the flash metallized parts. An explanation for this effect

has not yet been developed.

8. CONCLUSION

The overall results obtained in this IRAN experiment support the use

of IRAN as a total dose screen, if the annealing is performed at a suffi-

ciently high temperature.
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SECTION IX

SUMMARY AND CONCLUSIONS

A summary of the results obtained in the phase I verification testing

is given in Table 8. The technique is listed along with the parameters

which were correlated and the results of the correlation. The test vehicle

and sample size are also given.

The most positive results obtained were for the IRAN tests on the

discrete MOS devices. Although these preliminary verification tests

(except for IRAN) were inconclusive, they provided much insight for

future tests. It is now believed that E-B avalanche tests should be

performed on gated devices in order to control hole injection into the

oxide. It became obvious that in order for the input operating current

to be sensitive to the radiation induced shift in offset voltage, there

must be a large variation in the operating current from device to devicc

or lot to lot.

An approach other than the one selected in these tests will have to

be taken in order to measure the room temperature effects of dipoles at

the interface. BDM is currently investigating the use of conductance

versus frequency curves.

The results that were particularly disappointing were those for the

hole injection techniques. It was hoped that various "stress" tests

could be used to s imulate the effects of ioniz'ing radiation bv caus ing

hole trapping and iuterface state generation. Part of tile problem with

tile results ohtained may have been due to the test vehicle chosen. It

was discovered, at ter tiW tests had been performed, that the 40468A is

a DoIuS device. Although this sh1ould not invalidate the results, the

st ructure presint s :iddit iona I var i at ions from it conventional MOSFI-1 which

could make teL, data interpretat ion more difficult.

III ;]dd t iOn1 t() ti1' ole0(onWvlilt iiiai I -trlcture Iise(d for the stres

tests, the approachi Laken was too s imp] i st i c. I t is wel I known that

damge ;1 a fiun't ion of dout is non l inca r and satuirates at some level.

fit- ",i ' to'h" i'Vv l- stress hae ,noV been hr;liacte liz.ed buit they"
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are assumed also to be nonlinear. A more thorough approach to the

verification of the stress test technique would involve a complete char-

acterization of the parameter shift versus stress curve at several different

electric field strengths. These could then be compared to the AT versus

dose curves in order to identify similarities in slope and to best select

an appropriate stress and dose level to determine correlation.

In conclusion, the phase I verification tests have provided valuable

information on how to conduct the phase II verification tests, even

though these preliminary results were not encouraging.

6
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